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Abstract

Learning and recognition can be improved by sorting novel items into categories and

subcategories. Such hierarchical categorization is easy when it can be performed

according to learned rules (e.g., “if car, then automatic or stick shift” or “if boat, then
motor or sail”). Here, we present results showing that human participants acquire cate-

gorization rules for new visual hierarchies rapidly, and that, as they do, corresponding

hierarchical representations of the categorized stimuli emerge in patterns of neural

activation in the dorsal striatum and in posterior frontal and parietal cortex. Partici-

pants learned to categorize novel visual objects into a hierarchy with superordinate

and subordinate levels based on the objects' shape features, without having been told

the categorization rules for doing so. On each trial, participants were asked to report

the category and subcategory of the object, after which they received feedback about

the correctness of their categorization responses. Participants trained over the course

of a one-hour-long session while their brain activation was measured using functional

magnetic resonance imaging. Over the course of training, significant hierarchy learning

took place as participants discovered the nested categorization rules, as evidenced by

the occurrence of a learning trial, after which performance suddenly increased. This

learning was associated with increased representational strength of the newly acquired

hierarchical rules in a corticostriatal network including the posterior frontal and parietal

cortex and the dorsal striatum. We also found evidence suggesting that reinforcement

learning in the dorsal striatum contributed to hierarchical rule learning.
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1 | INTRODUCTION

Human actions typically follow perceptual and cognitive assessments

of the objects that are to be acted upon. For example, a soldier might

need to first determine whether someone is a potential enemy. This

might be followed by further decisions that are contingent upon that

initial assessment. For example, if enemy, the next step of the soldier's

decision tree might be to determine the risks of attacking versus hid-

ing or retreating. If non-enemy, the next step might involve deciding

who has the higher rank before acting further. Such real-life decisions

are often framed within hierarchical decision trees that require acts of

categorization that are based upon criteria that change as a function

of need, context, and circumstance.

Categorization requires highlighting features that are diagnostic

of class membership, while ignoring irrelevant features. Without this

ability, we would find it difficult to make inferences or generalizations

about things or events in the world, as revealed by the famous case of

Luria's patient “S” (Solomon Shereshevsky), a Russian mnemonist who

could remember vast amounts of information, seemingly eidetically,

but who was unable to abstract a general type from a collection of

instances (Mecacci, 2013). This case suggests that without an ability

to selectively amplify potentially low-variance diagnostic features of

visual stimuli while simultaneously attenuating potentially high-

variance nondiagnostic ones, we, like S, would find it difficult to com-

plete even simple categorization tasks (Ashby & Maddox, 2005;

Seger & Miller, 2010).

The results of previous studies suggest that human participants tend

to perceptually group objects and events into structured hierarchies of

similar types and subtypes (e.g., hierarchies based on size (Konkle &

Oliva, 2012), animacy (Kriegeskorte, Mur, Ruff, et al., 2008), or animal

type (Connolly et al., 2012)). Such an organization is analogous to the

nested and forking tree structure that many people use to organize their

computer folders based on file type and subtype. This hierarchical order-

ing of types presumably allows us to rapidly categorize objects and

events and to rapidly retrieve relevant information about them. This in

turn allows us to plan and make inferences more efficiently.

Given that learning to categorize entities into distinct, nonover-

lapping, structured hierarchies is important for effective decision-

making and action, it is important to understand where the learning of

such category decision hierarchies has its cortical and subcortical

effects. To that end, we designed an experiment that examined

changes in cortical and subcortical representations of identical stimuli

as one of two categorization decision trees was learned by two groups

of human participants, respectively.

Numerous previous studies have investigated which cortical and

subcortical structures are involved in nonhierarchical two-category

learning in which participants learn to place stimuli into one of just two

possible categories such as “left/right” or “male/female.” The results of

these studies indicate that a network including frontal and parietal cor-

tical areas, as well as the striatum, are involved in nonhierarchical two-

category learning (e.g., Antzoulatos & Miller, 2011, 2014; Ashby &

Ennis, 2006; Filoteo et al., 2005; Little et al., 2006; Seger, 2008;

Seger & Miller, 2010; Villagrasa et al., 2018; Weickert et al., 2009).

Other studies have examined how more complex category deci-

sions are acquired (Badre et al., 2010; Badre & Frank, 2012; Nee &

Brown, 2013; Theves et al., 2021). The experiment reported in this

article builds on a study by Badre et al. (2010) who identified brain

structures involved in the learning of “hierarchical” categorization

rules. Their results showed that a corticostriatal loop including poste-

rior regions of the frontal cortex and the dorsal striatum (caudate and

putamen) are involved in hierarchical rule learning. However, it has

remained unresolved whether the aforementioned brain structures

also align their activation patterns to represent the learned hierarchi-

cal categorization rules.

A strong test showing that a brain structure represents hierarchical

category information would show that given the same stimulus set and

training protocol, the same brain structure can represent distinct hierar-

chies across matched groups of individuals. Here, we accomplished this

experimental goal by measuring brain activation using functional mag-

netic resonance imaging (fMRI) in two groups of participants (15 partici-

pants per group); in each group participants learned just one of two

abstract, hierarchical category decision trees concerning identical stimu-

lus material. Whether a brain region represents such a hierarchy can

then be revealed through representational similarity analysis (RSA) of

fMRI activation patterns (Haxby et al., 2014; Kriegeskorte, 2011; Krie-

geskorte, Mur, & Bandettini, 2008). Our stimuli have the advantage of

being generated via an automated stochastic approach, allowing us to

effectively generate a very large set of unique exemplars that partici-

pants will not have encountered prior to training. We hypothesized that

the neural activation patterns in the dorsal striatum and posterior fron-

tal and parietal cortex would become more strongly tuned to the

learned categorization hierarchy by means of training, indicating that

these brain structures are involved in the acquisition of the hierarchical

categorization rules. Participants learned the hierarchical categorization

task by means of trial-and-error using feedback about response correct-

ness. Positive feedback for a correct response and negative feedback

for an incorrect response might lead to reinforcement learning in the

dorsal striatum (Cox & Witten, 2019; Ito & Doya, 2011; Maia &

Frank, 2011; Niv, 2009; Sutton & Barto, 2018). Therefore, we also

examined univariate fMRI activation following positive and negative

feedback in the dorsal striatum and checked whether it would predict

how rapidly hierarchical rule learning occurs between participants.

2 | MATERIALS AND METHODS

2.1 | Participants

We recruited 30 participants from the Dartmouth College community

(mean age: 21.3 years; standard deviation: 4.2 years; 15 females and

15 males). Participants were randomly assigned to one of two experi-

mental groups, with the constraint that the age and gender distribu-

tions in each group were approximately equal. The study protocol was

approved by the Committee for the Protection of Human Subjects at

Dartmouth College. Written, informed consent was obtained from

every participant prior to the experiment.
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2.2 | Stimuli

All stimuli were back-projected (Panasonic PT-D400U DLP) onto a

screen, which participants viewed using a mirror mounted on the

scanner head coil. Stimuli were contained within a 400 � 400 pixel

viewing window (corresponding to 8� � 8� visual angle) and were

“blob” images that were generated by setting a given number of con-

trol points, the minimum and maximum control point radii, the

interpolation method, and the space in which interpolation occurred.

Once these variables were set, a figure was generated by smoothly

interpolating among randomly generated control points given the con-

straints set by all parameters. This allowed for a stimulus space that

could effectively generate an infinite number of distinct exemplars.

However, we constrained the parameter space significantly by using

2 control point values (15 or 60 control points), 2 different stimulus

sizes (400 � 400 or 250 � 250 pixels), 2 different minimum control

F IGURE 1 Stimuli within the
two category hierarchies with
associated category rules to be
learned by each group of
participants.
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point radii (.3 and .7; here a value of 1 means the control points only

lie at the edge of the allowed space and a value of 0 means the con-

trol points all congregate in the center of the allowed space), and

2 pairs of values for the interpolation method and interpolation space

attributes—linear interpolation in Cartesian interpolation space and

piecewise cubic hermite interpolating polynomial interpolation in

Polar interpolation space. This effectively delineated

(2 � 2 � 2 � 2 =) 16 classes of stimuli that could be grouped along

several possible feature dimensions (see Figure 1 for stimuli).

2.3 | Category hierarchy structure

Each participant group learned a different category hierarchy (see

Figure 1 for stimuli grouped according to the two hierarchies and

Figure 2 for a diagram illustrating the construction of the hierar-

chies). Participants in the first group learned superordinate catego-

ries based on the interpolation method used to generate a given

figure (“blobby” figures vs. “spiky” figures; Hierarchy 1 in Figures 1

and 2). Participants in the second group learned superordinate cate-

gories based on the number of control points on a given figure

(15 vs. 60; Hierarchy 2 in Figures 1 and 2). The properties necessary

to distinguish subordinate categories were different within each

superordinate category. Participants in the first group needed to

learn that figures generated using piecewise cubic hermite interpo-

lating polynomial interpolation (the “blobby” figures) had to be put

into subcategories according to the number of control points (15 vs.

60), whereas figures generated using linear interpolation (“spiky” fig-
ures) had to be subcategorized according to the radii of the control

points within the figure (more prosaically, figures were to be

grouped according to whether the grooves between successive

ridges were either shallow or deep; Hierarchy 1 in Figures 1 and 2).

Participants in the second group needed to learn that figures with

fewer grooves (15 control points) had to be subcategorized accord-

ing to the radii of control points (shallow or deep grooves; Hierarchy

2 in Figures 1 and 2), whereas those with many grooves (60 control

points) were to be further subcategorized according to the interpola-

tion method used to generate them (“blobs” vs. “spikes”; Hierarchy

2 in Figures 1 and 2). Therefore, the two hierarchies learned by dif-

ferent groups of participants were merely rotated versions of one

another.

2.4 | Imaging protocol

For each participant, we collected a high-resolution structural scan of

the brain and 10 fMRI runs using a Philips 3 T Achieva scanner

equipped with a 32-channel head coil. In three participants, only nine

fMRI runs could be collected. The structural scan was acquired using

an MPRAGE sequence (220 axial slices, 0.94 � 0.94 mm in-plane

voxel resolution, 1 mm slice thickness, acquired matrix

size = 240 � 187, reconstructed matrix size = 256 � 256, field-of-

view (FOV) = 240 � 188 � 220, time-to-repeat (TR) = 8.176 ms,

time-to-echo (TE) = 3.72 ms, flip angle = 8�). In fMRI runs blood-oxy-

genation-level-dependent (BOLD) signals were measured using an

echo-planar imaging sequence (35 axially oriented slices,

3.0 � 3.0 mm in-plane voxel resolution, 3.5 mm slice thickness, no

gap, interleaved slice acquisition, acquired matrix size = 80 � 80,

reconstructed matrix size = 80 � 80, FOV = 240 � 240 � 122,

TR = 2 s, TE = 35 ms, flip angle = 90�).

F IGURE 2 Categorization rules for superordinate and subordinate levels of the two hierarchies with sample stimuli. Note that the same
stimulus set was used for both hierarchies, but the categorization of the stimuli changed with the rules of the hierarchy.
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2.5 | Procedure

Prior to the experiment, participants were informed that the stimuli

were nested in a hierarchical structure with categories and subcate-

gories and that their task was to figure out the hierarchical categoriza-

tion rule by trial-and-error. Using the example of cars and boats as

means of transportation for land and water, the concept of a hierar-

chical rule with categories and subcategories was explained to the

participants. Depending on whether they would want to travel by land

or water, they could choose from two categories (car and boat). In a

next step, they could further refine their choice by choosing a subca-

tegory within the car and boat categories (e.g., if car, then automatic

or stick shift; if boat, then motor or sail). Participants were informed

that once such a hierarchical rule exists, it can be used to sort numer-

ous exemplars of cars and boats into the same categories and subcat-

egories. They were also informed that there would be a similar

hierarchical rule at play in the scanner; this rule would allow them to

sort stimuli into two categories, each, in turn, having two subcate-

gories. Participants had to make clear to the experimenters that they

understood that their task was to discover and correctly apply this

hidden rule. Participants were briefly shown sample stimuli that would

be used in the experiment, without being given explicit instructions

about their category or subcategory memberships. Then, the specifics

about the fMRI procedure were explained.

On each trial, participants were asked to evaluate the category

and subcategory of each stimulus by pressing one out of four possible

buttons (one per subcategory) located on two two-button boxes, one

placed in each hand. A button press to either button on a given hand

indicated category membership for a given trial, whereas the specific

button pressed on the given button box indicated subcategory mem-

bership for that trial. A single button press therefore indicated both a

decision concerning category (hand, left or right) and subcategory

(button for the chosen hand, left or right) membership.

Feedback regarding the correctness of category and subcategory

responses was presented immediately after the button press. Feedback

was provided via two brief color changes of the fixation spot shown at

the center of the screen. Green indicated correct, and red indicated

incorrect. The first color flicker indicated the correctness of their cate-

gory response (i.e., whether their button press was in the correct hand),

while the second color flicker indicated the correctness of their subca-

tegory response (namely, whether the button pressed in the specific

hand was correct). For subsequent data analysis, a response was only

considered correct if participants correctly identified both the superor-

dinate and subordinate categories on a given trial. Otherwise, the

response was considered incorrect (see Section 3.1).

Each trial lasted 6 s, with a given stimulus shown for 1 s followed

by a 5 s long period during which a fixation spot was displayed at the

center of the screen. Participants could respond at any time during

the trial. An example trial is shown in Figure 3. Blank trials contained

just the fixation spot at screen center throughout the duration of the

trial and did not require any response from the participants. Each

fMRI run contained 48 trials, with 5 blank trials interspersed randomly

throughout each run. Each stimulus category was shown 24 times,

and each subcategory was shown 12 times per run. The set of 48 stim-

uli shown within a given run was identical throughout a given scan-

ning session and also identical across participants. Each run contained

a total of 169 TRs, including 5 TRs of a fixation spot at the beginning

and end of each run (total run duration = 5 min 38 s), for a total scan

time of approximately 1 h.

2.6 | Behavioral analysis

Previous results (see Ashby & Valentin, 2017, for review, and Badre

et al., 2010, for an example) showed that hierarchical rule learning

was not gradual over time; rather there was a clear point at which

participants' response accuracy sharply increased, corresponding to

the point at which participants figured out the rule. To calculate

when this point in time occurred for each participant, we con-

structed a backward learning curve by checking, for each participant,

when they first achieved 10 consecutive correct responses during

the course of the experiment (Ashby & Valentin, 2017;

Hayes, 1953). We used the first trial in this series of 10 correct

responses (henceforth referred to as the “learning trial”) as our learn-
ing criterion. Behavioral and brain imaging results from participants

who never achieved a learning trial over the course of the experi-

ment were excluded. We also calculated percent errors separately

for superordinate and subordinate categorization responses. If par-

ticipants learned a hierarchical rule, it was expected that they would

be more accurate for superordinate than subordinate categorization

decisions, indicating greater within-category confusion at the super-

ordinate category level. Furthermore, following the approach by

Badre et al. (2010), we calculated learning curves for each participant

based on the probability of a correct response on each trial by using

a state-space modeling procedure (Smith et al., 2004). This proce-

dure uses participants' correct and incorrect responses to estimate

their knowledge about the task over time (Smith et al., 2004). We

calculated the maximal first and second derivatives of the learning

curve for each participant, corresponding to the speed of learning

and the rate of change in the speed of learning, respectively. Finally,

we checked participants' response time, which we quantified as

median response time across trials for each fMRI run. We compared

the behavioral indices of learning (response accuracy, percent errors

for superordinate and subordinate categorization, learning trial, first

and second derivatives of the learning curve, response time)

between participants from the two hierarchy learning groups. Since

we did not find any significant differences in any behavioral index

(see Section 3.1), we collapsed the results across the two learning

groups for all subsequent behavioral and fMRI analyses.

2.7 | fMRI preprocessing

The anatomical and functional MRI data were preprocessed and ana-

lyzed using the Freesurfer software package (Martinos Center for Bio-

medical Imaging, Charlestown, MA). Each participant's structural scan
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of the brain was reconstructed and inflated (Dale et al., 1999; Fischl

et al., 1999). Functional scans were preprocessed including motion

correction, coregistration to the reconstructed structural scan of the

brain, and intensity-normalization. No spatial smoothing was

performed.

The preprocessed functional scans were entered into a general

linear model (GLM) analysis, which included regressors-of-interest for

each of the four categories per run, as well as regressors-of-no-

interest for motion correction parameters and linear scanner drift. The

BOLD signal was modeled using the SPM canonical hemodynamic

response function. The BOLD signal in each trial was only modeled

until participants responded, in order to constrain the calculation of

brain activation to the period of categorization. The remaining dura-

tion of each trial was modeled with a separate regressor-of-no-inter-

est. For each participant, two separate GLMs were calculated for each

run to estimate brain activations for the learned category hierarchy

(corresponding to Hierarchy 1 for the first group of participants and

Hierarchy 2 for the second group of participants) and the not-learned

category hierarchy (Hierarchy 2 for the first group of participants and

Hierarchy 1 for the second group of participants) (see Figures 1 and

2). The not-learned hierarchy was used as a control to measure the

specificity of changes in representational similarity for the learned

hierarchy over the course of learning. The not-learned hierarchy is

referred to as the “control hierarchy” in the following. Brain activa-

tions for each run (corresponding to the average brain activations

across all trials of each subcategory, quantified as beta maps in the

GLM) were extracted for a set of cortical and subcortical regions of

interest (ROIs) and submitted to a RSA (see Section 2.8).

Following previous studies in categorization and categorization

learning (Antzoulatos & Miller, 2011, 2014; Ashby & Ennis, 2006;

Badre et al., 2010; Badre & Frank, 2012; Davis et al., 2017; Filoteo

et al., 2005; Freedman & Assad, 2006; Little et al., 2006; Nee &

Brown, 2013; Seger, 2008; Seger & Cincotta, 2005; Seger &

Miller, 2010; Theves et al., 2021; Weickert et al., 2009) we used the

dorsal striatum (conjunction of caudate and putamen), ventral striatum

(accumbens), pallidum, posterior and anterior subregions of the frontal

cortex (following the definition and nomenclature used by Badre

et al., 2010; from posterior to anterior consisting of the dorsal premo-

tor cortex, pre-premotor cortex, mid dorsolateral prefrontal cortex,

rostro-polar cortex) and the intraparietal sulcus as ROIs for the RSA.

These regions had the following mean MNI coordinates (X, Y, Z)

across the subset of participants with a learning trial (n = 23 out of

30 total, see Section 3.1): caudate (left: �14, 8, 10, right: 14, 9, 10);

putamen (left: �28, 0, �2; right: 28, 1, �2); accumbens (left: �9,

10, �9; right: 8, 10, �8); pallidum (left: �21, �5, �2; right: 21, �5,

�2); dorsal premotor cortex (left: �30, �10, 68; right: 30, �10, 68);

pre-premotor cortex (left: �38, 10, 34; right: 38, 10, 34); mid dorsolat-

eral prefrontal cortex (left: �50, 26, 24; right: 50, 26, 24); rostro-polar

cortex (left: �36, 50, 6; right: 36, 50, 6); and intraparietal sulcus (left:

�24, �66, 46; right: 24, �63, 49). We defined these ROIs (except the

regions in the frontal cortex) using the automated segmentation of

the structural scan of the brain into cortical regions and subcortical

nuclei performed by Freesurfer during reconstruction (Desikan

et al., 2006; Fischl et al., 2002). Specifically, we extracted the intrapar-

ietal sulcus (partially including the superior parietal gyrus) from Free-

sufer's “aparc” parcellation. The caudate, putamen, accumbens and

pallidum were extracted from Freesurfer's “aseg” segmentation. For

the regions in the frontal cortex, we followed the approach by Badre

et al. (2010) and defined for each participant four spherical ROIs with

a radius of 8 mm in the frontal cortex running along a posterior–

anterior (caudo-rostral) axis (using coordinates originally reported in

Badre & D'Esposito, 2007, and reused in Badre et al., 2010). These

F IGURE 3 Example trial. Each
trial was 6 s long. At the
beginning of each trial, a stimulus
was presented for 1 s, followed
by the presentation of a central
fixation spot. Participants were
asked to evaluate the
superordinate and subordinate
categories of the stimulus and to

respond by pressing a button on
the button box. Participants could
respond from stimulus onset.
After the response, feedback
about the correctness of the
response was provided by a
change of color of the fixation
spot to green for a correct
response or to red for an
incorrect response. Sup.
= superordinate category
response. Sub. = subordinate
category response.
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ROIs were located within the following anatomical structures: dorsal

premotor cortex in the precentral gyrus, pre-premotor cortex in the

inferior frontal sulcus, mid dorsolateral prefrontal cortex in the inferior

frontal sulcus, rostro-polar cortex in the middle frontal gyrus. Note

that in the original study by Badre et al. (2010) evidence of category

hierarchy learning was found in the univariate BOLD signal of the pos-

terior frontal regions (dorsal premotor cortex and pre-premotor cor-

tex), suggesting that these regions may also be involved in learning to

represent the learned categorization hierarchy in our study. Figure 4

shows the location of the ROIs in a representative participant. The

ROIs were merged between left and right hemispheres and trans-

formed into functional MRI-space in which all further analyses were

carried out.

2.8 | Representational similarity analysis

In order to assess whether an ROI represented a categorization rule

hierarchy, we conducted an RSA. This is a type of multivariate pattern

analysis, where the (dis-)similarity of activation patterns between con-

ditions is compared to the hypothetical (dis-)similarity of the condi-

tions based on the task. In our task, a brain structure that represented

the hierarchical rule would show activation patterns that are similar

for conditions from the same superordinate category and dissimilar

for conditions that are from different superordinate categories.

The beta maps from the GLMs corresponding to the subcate-

gories from either the learned or the control hierarchy were used to

create representational dissimilarity matrices (RDMs) for each ROI,

run and participant. Representational dissimilarity of two subcate-

gories in a given ROI and run was calculated for each participant by

subtracting the Pearson correlation coefficient of the corresponding

beta maps from 1. If two subcategories were completely similar, the

correlation between their beta maps would be 1, resulting in a dissimi-

larity of 0. If they were completely dissimilar, their correlation would

be �1, resulting in a dissimilarity of 2 (Haxby et al., 2014;

Kriegeskorte, 2011; Kriegeskorte, Mur, & Bandettini, 2008). This anal-

ysis was carried out for the beta maps fit according to the learned cat-

egorization hierarchy as well as for the beta maps fit according to the

control categorization hierarchy for each run and participant. This

resulted in two RDMs per participant and run, one corresponding to

the learned hierarchy, and another one corresponding to the control

hierarchy.

The similarity of the resulting RDMs was then compared to a the-

oretical RDM for each run and participant. The theoretical RDMs

were constructed based on the assumption that subordinate catego-

ries from the same superordinate category would be more similar than

those of two different superordinate categories. Consider, as an

example, that the superordinate categories were based on the number

of grooves. In this case, learning should move all images with few

grooves closer together in representational space, while moving them

away from images with many grooves. If, however, the superordinate

category was based on spikiness, then some images with few grooves

should move, over the course of learning, close to images with many

grooves. See Figure 5 for a graphical example of how some stimuli

should be considered more or less similar depending on the hierarchy

learned. The strength with which an ROI represented a hierarchy in a

given run was calculated as the Spearman rank correlation between

its RDM and the theoretical RDM for that hierarchy for each partici-

pant and each run. A high correlation between the data RDM and the

theoretical RDM of a hierarchical ruleset would indicate a strong

F IGURE 4 Region of interest (ROI) locations in a representative participant. Left: Cortical ROIs shown on the inflated left hemisphere (dark
gray = sulci, light gray = gyri). Nomenclature of the frontal ROIs as in Badre et al. (2010). Right: Subcortical ROIs including the dorsal striatum
(caudate and putamen, shown in teal and purple, respectively), ventral striatum (accumbens, shown in light brown), and pallidum (shown in blue).
Other colors correspond to other anatomical segmentations by Freesurfer (white and green = white matter in the left and right hemispheres,
respectively, covered by gray matter shown in dark brown).
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representation of this hierarchy in this ROI for this run and this partic-

ipant. A low correlation would indicate a weak representation. See

Figure 6 for an overview of the analysis approach.

In our theoretical RDM, we assumed a hierarchical representation

that was designed to reflect the hierarchical nature of the stimulus

space, by including intermediate similarity values for stimuli in the

same superordinate category, but different subordinate categories. It

is important to note that the specific values for the theoretical RDM

are arbitrary as long as the rank of their values reflects the expected

dissimilarity, because the representational strength of the data-

derived RDM with the theoretical RDM is based on a Spearman rank

correlation. We used 1 for low dissimilarity and 2 for high dissimilarity

(corresponding to teal cells and yellow cells in the theoretical RDM,

respectively; see Figures 5 and 6). These values are commonly chosen

in other RSAs (Kriegeskorte, Mur, & Bandettini, 2008), because they

correspond to 1 minus the correlation (perfect correlation would

mean zero dissimilarity). However, the values are arbitrary as long as

rank correlations are employed. For example, the same correlational

results could be obtained, if 5 was chosen to reflect low dissimilarity

and 500 to reflect high dissimilarity in the theoretical RDM.

We used the following approach to quantify and statistically

assess category hierarchy learning in the fMRI data. We tested which

ROIs showed an increase of representational strength from before to

after the learning trial. Since participants were unaware of the catego-

rization rule in the beginning, but were able to classify accurately after

the learning trial, we would expect that this is reflected by an increase

of representational strength of the learned hierarchy after the learning

trial. The same analysis was also carried out for the control hierarchy,

for which we expected no significant change in representational

strength from before to after the learning trial. We sorted all fMRI

runs according to whether they occurred before or after the learning

trial. fMRI runs, which occurred before the learning trial, were used

for the analysis of representational strength before the learning trial.

fMRI runs, which occurred after the learning trial, were used for the

analysis of representational strength after the learning trial. For the

fMRI run with the learning trial we used the following approach: we

determined when the learning trial occurred within the fMRI run. If

the majority of trials within the run occurred before the learning trial,

then this run was sorted into the group of fMRI runs before the learn-

ing trial. Otherwise, it was sorted into the group of fMRI runs after

the learning trial. For participants with a learning trial in the first fMRI

run, we used this run as the fMRI run before the learning trial.

2.9 | Univariate fMRI analysis of response
feedback

Previous studies found that categorization learning involved rein-

forcement learning in the striatum (e.g., Antzoulatos & Miller, 2011,

2014; Badre et al., 2010; Badre & Frank, 2012; Dayan &

Balleine, 2002; Frank & Badre, 2012; Little et al., 2006; Niv, 2009;

Packard & Knowlton, 2002; Seger, 2008). Neuroimaging studies

reported that the BOLD signal in the striatum increased for positive

feedback and decreased for negative feedback during reinforcement

learning (Schönberg et al., 2007; Seger et al., 2010; Seger &

Cincotta, 2005). For an exploratory analysis, we examined whether

F IGURE 5 Theoretical representational
dissimilarity of stimuli according to the
hierarchy in which the subordinate decision
rule differed for “blobby” and “spiky”
figures (if spiky, then distinction by depth of
grooves; if blobby, then distinction between
few and many grooves; Category Hierarchy
1 in Figures 1 and 2). Each row and column
belongs to a group of stimuli according to their

features. Dissimilarity along the diagonal is
0 (color-coded as dark blue), and it is lower
within superordinate categories (color-coded as
teal) than between (color-coded as yellow).
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there were similar indications for reinforcement learning using BOLD

signal changes following response feedback in the striatum. We

focused our analysis on univariate activation in the striatum across

fMRI runs until the learning trial, that is, the period in which hierarchi-

cal rule learning by means of trial-and-error took place. To this aim,

for each fMRI run until the learning trial we carried out a GLM analysis

with separate regressors-of-interest for the periods of stimulus and

feedback presentation in correct and incorrect trials, respectively

(yielding a total of four regressors-of-interest for stimulus presenta-

tion in correct trials, stimulus presentation in incorrect trials, feedback

presentation in correct trials and feedback presentation in incorrect

trials). As for the analysis of response accuracy, a trial was only con-

sidered correct when the participant correctly identified superordi-

nate and subordinate categories. Otherwise, the trial was considered

incorrect. We used the same procedure to sort fMRI runs into the

group of fMRI runs before the learning trial as in the RSA (see

Section 2.8). A regressor-of-no-interest was included for the remain-

ing duration of each trial after the presentation of response feedback.

The analysis was carried out on fMRI data preprocessed in the same

fashion as for the RSA (see Section 2.7). We included regressors-of-

no-interest for motion correction parameters and linear scanner drift

in the GLM.

For each subcortical ROI (dorsal striatum, ventral striatum, palli-

dum) and each fMRI run until the learning trial, we calculated the per-

cent change of the BOLD signal during stimulus and feedback

presentation in correct and incorrect trials, respectively, relative to

the BOLD signal in blank (baseline) trials and then averaged the results

across fMRI runs until the learning trial for each participant. We

F IGURE 6 Overview of the representational dissimilarity analysis. For each participant, ROI, and run, representational strength of a given
hierarchical ruleset (either the learned or the control hierarchy) was measured as the Spearman rank correlation between the dissimilarity of
subcategories represented in activation patterns and the theoretical dissimilarity of subcategories.

FRANK ET AL. 3905

 10970193, 2023, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hbm

.26323 by U
niversity O

f Pennsylvania, W
iley O

nline L
ibrary on [10/03/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



compared BOLD percent signal changes for stimulus and feedback

presentations between correct and incorrect trials and calculated

whether the signal changes for positive and negative feedback follow-

ing correct and incorrect participant responses, respectively, were

associated with the number of trials needed to figure out the hierar-

chical categorization rule (corresponding to the learning trial) across

participants using correlational analyses.

3 | RESULTS

3.1 | Behavioral performance

Here, 23 of a total of 30 participants (11 out of 15 in hierarchy learn-

ing group one; 12 out of 15 in hierarchy learning group 2) achieved

the learning criterion (i.e., a learning trial) over the course of training.

All further analyses were carried out only for these 23 participants.

Figure 7 shows the behavioral results of the included participants. The

behavioral results of participants who did not achieve the learning cri-

terion are shown in Supplementary Figure 1.

First, we tested whether there were any significant differences in

behavioral performance between included participants from the two

hierarchy learning groups. For the purpose of statistical testing,

response accuracy and response time were arcsine square root and

log transformed, respectively. The results showed no significant dif-

ferences in response accuracy and median response time in the first

and final fMRI run (corresponding to the beginning and end of train-

ing) between the learning groups (independent-sample t test;

response accuracy: first: t(21) = 1.04, p = .31; final: t(21) = 0.85,

p = .41; response time: first: t(21) = 1.38, p = .18; final: t(21) = 0.09,

p = .93). There were no significant differences in the maximum first

derivative (corresponding to the speed of learning; t(21) = -0.61,

p = .55) and maximum second derivative (corresponding to the rate

of change in the speed of learning; t(21) = -0.41, p = .68) between

the learning groups. A 2 � 2 � 10 mixed design ANOVA with the

between factor of learning group (Hierarchy 1, Hierarchy 2) and the

within factors of categorization level (superordinate, subordinate) and

fMRI run (fMRI runs 1–10) on percent error (arcsine square root trans-

formed) showed no significant main effect of learning group (F(1,21)

= 0.87, p = .36) and no significant interactions between learning

group and categorization level (F(1,21) = 0.92, p = .35), learning

group and fMRI run (F(9,189) = 1.88, p = .06), and learning group,

categorization level and fMRI run (F(9,189) = 1.33, p = .23). Finally,

there was no significant difference in the number of trials necessary

to reach 10 consecutive correct trials in a row (corresponding to the

learning trial) between the learning groups (hierarchy learning group

one: median 145 trials; hierarchy learning group 2: median 130 trials;

Mann Whitney U test; U = 62, p = .81). Together, these results do

not provide evidence that behavioral performance was significantly

different between the two hierarchy learning groups. Therefore, we

carried out all further analyses across participants from the two hier-

archy learning groups.

Next, we tested whether participants improved response accu-

racy (arcsine square root transformed) by means of training using

paired-sample t tests. Figure 7a shows each participant's response

accuracy for correct superordinate and subordinate categorization in

each fMRI run. Participants' response accuracy was significantly
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F IGURE 7 Behavioral results. (a) Response accuracy (in %) for
correct superordinate and subordinate categorization in each
functional magnetic resonance imaging (fMRI) run. Each line shows
the result from a different participant (different colors correspond to
different participants, n = 23 in total). Solid and dotted lines show
results from the two hierarchy learning groups (solid line for hierarchy
learning group one, 11 participants; dotted line for hierarchy learning
group 2, 12 participants). Chance level of correct superordinate and
subordinate categorization corresponds to 25% correct response
accuracy. The fMRI run in which participants achieved the learning
criterion (i.e., the learning trial) is shown by an x above the x-axis
(same color as for each participant's response accuracy). (b) Same as
(a) but for mean response accuracy across all fMRI runs before the
learning trial and across all fMRI runs after the learning trial. The thick
black line shows mean ± standard-error-of-the-mean (SEM) results
across participants. (c) Mean ± SEM percent error separately for
superordinate and subordinate categorization in each fMRI run across
participants. (d) Learning curve for each participant estimated by using
a state-space modeling procedure. The y-axis shows the estimated

probability of a correct response. Otherwise, same as (a). (e) Same as
(a) but for median response time across trials in each fMRI run. (f)
Same as (b) but for response time.
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higher in the final fMRI run compared with the first fMRI run (t(22)

= 13.1, p < .001, Cohen's d = 2.73), indicating that training improved

categorization performance. Furthermore, participants' mean response

accuracy across fMRI runs after the learning trial was significantly

higher than their mean response accuracy across fMRI runs before

the learning trial (t(22) = 15.4, p < .001, d = 3.20; Figure 7b).

Figure 7c shows the mean percent errors separately for superor-

dinate and subordinate categorization across participants for each

fMRI run. A 2 � 10 repeated measures ANOVA with the factors of

categorization level (superordinate, subordinate) and fMRI run (fMRI

runs 1–10) on percent error (arcsine square root transformed) showed

a significant main effect of categorization level (F(1,22) = 19.22,

p < .001, partial η2 = 0.47), indicating that participants exhibited

fewer errors for superordinate than subordinate categorization across

fMRI runs (see Figure 7c). Furthermore, there was a significant main

effect of fMRI run (F(9,198) = 79.4, p < .001, partial η2 = 0.78), indi-

cating that participants exhibited fewer errors for superordinate and

subordinate categorization over the course of training (Figure 7c).

There was no significant interaction between categorization level and

fMRI run (F(9,198) = 1.20, p = .29).

Figure 7e shows each participant's median response time in each

fMRI run. Participants' response time (log transformed) in the final

fMRI run was not significantly different from the first fMRI run

(paired-sample t test; t(22) = 1.03, p = .31). Participants' mean

response time across fMRI runs after the learning trial was not signifi-

cantly different from their mean response time across fMRI runs

before the learning trial (t(22) = 1.09, p = .29; Figure 7f).

3.2 | Representational similarity analysis

Figure 8 shows the mean representational strength of fMRI activation

patterns with the learned and control hierarchies across fMRI runs

before and after the learning trial. If learning of the hierarchical rule

set took place in a given brain structure, we would expect to find an

increase of representational strength only for the learned hierarchy

after the learning trial compared with representational strength before

the learning trial. To test this, we conducted 2 � 2 repeated measures

ANOVAs with the factor of time-point (before learning trial, after

learning trial) and hierarchy (learned, control) on representational

strength (Fisher z-transformed) in our ROIs (dorsal striatum, ventral

striatum, pallidum, frontal cortex [consisting of dorsal premotor cor-

tex, pre-premotor cortex, mid dorsolateral prefrontal cortex, rostro-

polar cortex], intraparietal sulcus). We were particularly interested in a

significant interaction between time-point and hierarchy resulting

from an increase of representational strength only for the learned

hierarchy after the learning trial. Only the dorsal striatum and the dor-

sal premotor cortex showed such a significant interaction (dorsal stria-

tum: F(1,22) = 6.13, p = .02, partial η2 = 0.22; dorsal premotor

cortex: F(1,22) = 7.81, p = .01, partial η2 = 0.26) (Figure 8a,b). Of

note, there was a significant main effect of hierarchy in the dorsal pre-

motor cortex (F(1,22) = 32.7, p < .001, partial η2 = 0.60) (Figure 8b)

and the intraparietal sulcus (F(1,22) = 8.17, p = .009, partial

η2 = 0.27) (Figure 8c), indicating greater representational strength for

the learned than the control hierarchy before and after the learning

trial. See Supplementary Figure 2 for results in other ROIs.

Post hoc analyses showed that the representational strength of

fMRI activation patterns in the dorsal striatum with the learned hierar-

chy was not significantly different from zero (corresponding to an

absence of any correlation with the theoretical RDM) before the

learning trial (one-sample t test; t(22) = �1.06, p = .30) but increased

significantly from before to after the learning trial (paired-sample

t test after learning trial vs. before learning trial; t(22) = 2.70, p = .01,

d = 0.56), such that it was significantly different from zero after the

learning trial (one-sample t test; t(22) = 2.64, p = .02, d = 0.55)

(Figure 8a). No such significant results were found for the control

hierarchy in the dorsal striatum (representational strength before the

learning trial: t(22) = 1.34, p = .19; change of representational

F IGURE 8 Multivariate fMRI results. (a) Mean ± SEM representational strength of activation patterns in the dorsal striatum with the learned
and control hierarchies (shown in green and gray, respectively) across fMRI runs before and after the learning trial. (b, c) Same as (a) but for the
dorsal premotor cortex and the intraparietal sulcus, respectively.
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strength from before to after the learning trial: t(22) = �1.31, p = .20;

representational strength after the learning trial: t(22) = �0.83,

p = .42). For the dorsal premotor cortex, we found that the represen-

tational strength with the learned hierarchy was significantly above

zero before and after the learning trial (before learning trial: t(22)

= 2.75, p = .01, d = 0.57; after learning trial: t(22) = 7.39, p < .001,

d = 1.54) with a significant increase of representational strength from

before to after the learning trial (t(22) = 3.19, p = .004, d = 0.67)

(Figure 8b). Representational strength for the control hierarchy was

not significantly different from zero before the learning trial (t(22)

= 0.60, p = .55) but tended to decrease from before to after the

learning trial (t(22) = �1.77, p = .09), such that it was significantly

below zero after the learning trial (t(22) = �2.39, p = .03, d = -0.50).

For the intraparietal sulcus, we found that the representational

strength with the learned hierarchy was significantly different from

zero before the learning trial (t(22) = 2.20, p = .04, d = 0.46) and

after the learning trial (t(22) = 4.29, p < .001, d = 0.89) with no signif-

icant change of representational strength from before to after the

learning trial (t(22) = 0.95, p = .35) (Figure 8c). No significant results

were found for the control hierarchy in the intraparietal sulcus (repre-

sentational strength before the learning trial: t(22) = 0.60, p = .55;

change of representational strength from before to after the learning

trial: t(22) = 1.68, p = .11; representational strength after the learning

trial: t(22) = �1.72, p = .10).

3.3 | Univariate fMRI analysis of response
feedback

Figure 9 shows the mean univariate BOLD percent signal changes in

the dorsal striatum across fMRI runs before the learning trial sepa-

rately for stimulus and feedback presentation in trials with correct and

incorrect participant responses. There was no significant difference in

BOLD percent signal change during stimulus presentation between

trials with correct and incorrect participant responses (paired-sample

t-test; t(22) = �1.34, p = .19; Figure 9a). However, there was a signif-

icant difference in BOLD percent signal change between positive and

negative feedback following correct and incorrect participant

responses, such that the BOLD signal was significantly greater

(i.e., more positive) for positive than negative feedback (paired-sample

t test; t(22) = 5.33, p < .001, d = 1.11; Figure 9b), similar to previous

reports (see Schönberg et al., 2007; Seger et al., 2010; Seger &

Cincotta, 2005).

We tested whether BOLD percent signal changes for positive and

negative feedback were associated with hierarchical rule learning. To

this end, we correlated BOLD percent signal changes following posi-

tive and negative feedback with the learning trial across participants.

The results showed that participants who tended to show a greater

increase of the BOLD signal for positive feedback in the dorsal stria-

tum tended to reach the learning trial later in training (Spearman cor-

relation; r = .69, p < .001; Figure 9c). Participants who tended to

show a greater decrease of the BOLD signal for negative feedback in

the dorsal striatum tended to reach the learning trial earlier in training

(Spearman correlation; r = .62, p = .002; Figure 9d). Similar trends

were found in the ventral striatum and pallidum (Supplementary

Figure 3).

4 | DISCUSSION

In this study, we examined which brain structures known to be impor-

tant for categorical processing are involved in the learning of complex

hierarchical decision trees. Without the ability to learn to categorize

items or events according to such sequentially structured decision

trees, we would find it difficult to make inferences or generalizations

about things or events in the world that have not just types, but also

subtypes that require interdependent decisions at superordinate and

subordinate nodes. We trained participants on one of two hierarchical

decision trees that structured a novel stimulus space. The two hierar-

chy structures were rotated versions of each other, and the same

F IGURE 9 Univariate fMRI results in the dorsal striatum. (a) Mean ± SEM blood-oxygenation-level-dependent (BOLD) percent signal changes
from fixation baseline (corresponding to zero on the y-axis) for the period of stimulus presentation in trials with correct and incorrect participant
responses (shown in green and red, respectively) across fMRI runs before the learning trial and across participants (n = 23). (b) Same as (a) but the
period of response feedback. (c) Correlational analysis between BOLD percent signal change for positive feedback following correct participant
responses and the learning trial across participants. (d) Same as (c) but for BOLD percent signal change for negative feedback following incorrect

participant responses.
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novel exemplars were used for both stimulus spaces. Participants

learned the hierarchies by evaluating the superordinate and subordi-

nate categories of each exemplar and receiving feedback about the

correctness of the categorization response after each trial. The train-

ing was conducted over the course of a 1-h-long session while brain

activation was measured with fMRI. Our behavioral results showed

that the majority of participants reached a time-point, over the course

of training, when they greatly improved their categorization perfor-

mance for the learned hierarchy, indicating that they had figured out

the hierarchical categorization rule. The fMRI results showed that the

kind of categorization hierarchy learned to structure the stimulus

space had a significant effect on how that hierarchy was represented

in the brain. Specifically, we found evidence suggesting that the learn-

ing of a hierarchical categorization tree resulted in distinguishable rep-

resentations of the learned hierarchy in the dorsal striatum and in

posterior frontal and parietal cortex. These results indicate that a cor-

ticostriatal network is involved in the learning of complex hierarchical

categorization trees. A follow-up analysis of activation for response

feedback in the dorsal striatum showed evidence that reinforcement

learning was occurring during training.

Our behavioral results are consistent with hierarchical rule learn-

ing (Ashby & Valentin, 2017). Over the course of training, response

accuracy in the majority of participants (23 out of 30 total) exhibited a

point at which it sharply increased (the learning trial), corresponding

to the point at which participants figured out the hierarchical categori-

zation rule (see also Badre et al., 2010, for similar results). Further-

more, participants had fewer errors for superordinate than

subordinate categorization; that is, they showed greater within-

category confusion within the superordinate category, across training,

which is a pattern consistent with acquiring a hierarchical rule. The

analysis of participants' response times showed that these did not

change significantly over the course of training (similar to results

reported by Little et al., 2006), which indicates, first, that it is unlikely

that hierarchical rule learning was driven by a speed-accuracy trade-

off, and second, that changes in representational strength after the

learning trial were unlikely to be modulated by changes in task diffi-

culty, as indexed by response time (see Badre & Nee, 2018).

Our multivariate fMRI results showed that a corticostriatal net-

work between the premotor cortex (located within the posterior fron-

tal cortex) and the dorsal striatum increased representational strength

for the learned hierarchy after the learning trial. These results are con-

sistent with univariate findings reported by Badre et al. (2010). How-

ever, note that in their original study the pre-premotor cortex, a

region located anterior to the premotor cortex, was also found to be

involved in hierarchical rule learning, whereas no significant change of

representational strength was found in this region in the current study

(see Supplementary Figure 2). Four corticostriatal circuits have been

hypothesized, which interact but serve different functions in categori-

zation learning (Seger, 2008; Seger et al., 2010; Seger & Miller, 2010).

According to this theoretical framework, visual information about the

to-be-categorized visual stimuli is processed in the visual loop

(between visual areas and the posterior caudate). This information is

fed forward to the executive loop (between dorsal and lateral portions

of the prefrontal cortex, parietal cortex and the anterior caudate) to

construct and shift rule sets and update representations in working

memory. The motor loop (including the primary motor and somato-

sensory cortex, premotor and supplementary motor cortex and the

putamen) is crucial to learning how to plan and select appropriate

actions (i.e., motor responses) to indicate category membership. The

motivational loop (including ventromedial frontal cortex, hippocam-

pus, amygdala, ventral striatum, and ventral portions of the caudate

and putamen) supports reinforcement learning, especially in trial-and-

error categorization tasks, by processing reward and feedback signals

(Seger, 2008; Seger et al., 2010; Seger & Miller, 2010). Monkey elec-

trophysiology studies (Antzoulatos & Miller, 2011, 2014) and corre-

sponding modeling work (Villagrasa et al., 2018) found that the dorsal

striatum (caudate) changed activity more rapidly than prefrontal corti-

cal areas in category learning and in learning to reverse acquired rules

(Pasupathy & Miller, 2005), indicating that the dorsal striatum might

act as a “teacher” of cortical regions. Since the dorsal striatum is part

of all corticostriatal loops, it might contribute to each of the afore-

mentioned functions in hierarchical categorization learning. However,

the contribution in our study was most evident for the motor loop,

because the premotor cortex, as part of this corticostriatal loop, also

increased the representational strength for the learned hierarchy after

the learning trial (Figure 8).

The intraparietal sulcus in the posterior parietal cortex represented

the learned hierarchy prior to and after the learning trial (Figure 8c).

The intraparietal sulcus is involved in categorical and rule-based encod-

ing (Fitzgerald et al., 2012; Freedman & Assad, 2006, 2016;

Swaminathan & Freedman, 2012; Zhou & Freedman, 2019), similar to

the frontal cortex to which it is connected (especially the dorsal-

posterior frontal cortex, which also exhibited significant representa-

tional strength for the learned hierarchy before and after the learning

trial; see Figure 8b; Badre & Nee, 2018) and considered part of the

executive loop (Seger & Miller, 2010). Freedman and Assad (2006)

showed that neurons in monkey lateral intraparietal cortex (LIP) encode

the category to which a direction of visual motion belonged, whereas

neurons in the middle temporal motion processing area MT did not rep-

resent categories, while nonetheless representing motion directions. In

monkeys, LIP is thought to represent categories at the level of abstract

rule-based and goal-based representations (Freedman & Assad, 2016).

Previous studies found that encoding of categorical membership in

human participants (Ashby & Zeithamova, 2022) and nonhuman pri-

mates (Swaminathan & Freedman, 2012) in posterior parietal regions

occurs fast, even faster than in frontal cortex (Swaminathan &

Freedman, 2012). We could speculate that learning in our hierarchical

categorization task occurred in corticostriatal loops at different speeds.

Hierarchical encoding and rule learning in the executive loop including

the intraparietal sulcus might have occurred faster, while learning in the

motor loop was slower, because after categorical encoding of the visual

stimuli, this categorical representation in the intraparietal sulcus still

had to be associated with the corresponding motor responses.

A prominent view assumes that reinforcement learning occurs in

the striatum (Cox & Witten, 2019; Ito & Doya, 2011; Maia &

Frank, 2011; Niv, 2009; Reavis et al., 2015; Sutton & Barto, 2018),
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such that those actions are learned that maximize future rewards

(Schultz, 1998; Schultz et al., 1997). Such reinforcement learning

occurs in categorization learning tasks where the categorization rule

must be figured out by means of trial-and-error with response feed-

back or reward (Antzoulatos & Miller, 2011, 2014; Badre et al., 2010;

Badre & Frank, 2012; Dayan & Balleine, 2002; Frank & Badre, 2012;

Little et al., 2006; Niv, 2009; Packard & Knowlton, 2002;

Seger, 2008). It is likely that the hierarchical representation emerged

in the dorsal striatum at least partially due to reinforcement learning,

given that participants in our training task received feedback about

the correctness of their categorization response at the end of each

trial. We found that the BOLD signal in the dorsal striatum for positive

feedback after a correct response (i.e., positive reinforcement) was

significantly greater (i.e., more positive) than for negative feedback

after an incorrect response (i.e., absence of reinforcement or negative

reinforcement) (Figure 9b), similar to previous reports (Schönberg

et al., 2007; Seger et al., 2010; Seger & Cincotta, 2005). We carried

out correlational analyses between BOLD percent signal changes for

positive and negative feedback in the dorsal striatum during the

period of learning (i.e., across fMRI runs before the learning trial) and

the learning trial (i.e., the number of trials needed to figure out the

hierarchical categorization rule) across participants. The results

showed that participants who tended to have a greater increase of

the BOLD signal for positive feedback tended to reach the learning

trial later in training, while participants who tended to have a greater

decrease of the BOLD signal for negative feedback tended to reach

the learning trial earlier in training (similar trends were found in the

ventral striatum and pallidum). This agrees with results reported by

Seger et al. (2010) who speculated that positive feedback might be

more important when categorization performance is low to figure out

the categorization rule, while negative feedback might be more crucial

to correct rare response errors when categorization performance is

high. A similar explanation could apply to our results, since partici-

pants who tended to reach the learning trial rapidly also tended to

have higher response accuracy early in training (see Figure 7a).

4.1 | Limitations

We used a set of novel visual stimuli generated via an automated sto-

chastic approach for the hierarchical categorization task. Is it possible

that categorization learning was modulated by the perceptual similarity

between the stimuli? Although we cannot completely rule out this possi-

bility, we think it is unlikely for the following reasons. For each partici-

pant we calculated two RSAs, one for the learned hierarchy, and another

one for the not-learned (control) hierarchy. The same stimuli were used

for each hierarchy and the two hierarchies were merely rotated versions

of one another (see Figures 1 and 2) such that the same categorization

rules (blobs vs. spikes, 15 vs. 60 control points, and shallow vs. deep)

were used for each hierarchy but at different superordinate and subordi-

nate categorization levels (Figure 2). If learning were only driven by

increasing shape similarity from superordinate to subordinate levels, we

would expect to find a similar increase of representational strength for

the learned and control hierarchies. However, this was not the case in

any ROI (see Figure 8 and Supplementary Figure 2). Moreover, if shape

similarity was the basis of categorization, we would not expect the

occurrence of a learning trial, which is instead indicative of the sudden

comprehension of an abstract categorization rule. Nevertheless, we can-

not completely rule out a possible influence of shape similarity on repre-

sentational strength, which is a limitation of the current study. Any

future study that attempted to rule out this kind of possible confound

would have to assign category and subcategory membership in a manner

that was independent of visible stimulus attributes.

One might also argue that a nonhierarchical RDM would fit the

data similarly well as a hierarchical RDM, indicating that participants

did not learn a hierarchical categorization but four separate categories

within a “flat” structure. We could not conduct an RSA using a non-

hierarchical RDM by changing all teal cells in Figure 5 to blue (i.e., no

subordinate categories), because this would leave only one value in

the theoretical RDM, making it impossible to calculate a Spearman

rank correlation of such an RDM with an RDM based on fMRI activa-

tion patterns. The same limitation exists for a theoretical RDM in

which all teal cells in Figure 5 are changed to yellow (i.e., an RDM

based only on shape similarity). However, we believe that the behav-

ioral results are consistent with the assumption that participants

learned a hierarchical categorization rule for the following reasons.

First, it was found that a flat rule learning is associated with a gradual

increase of response accuracy (Badre et al., 2010; see their Figure 2).

In contrast, participants in our study exhibited a sharp increase of

response accuracy at the point in training at which they figured out

the hierarchical categorization rule (see Figure 7a,d). Second, partici-

pants made fewer errors for superordinate than subordinate categori-

zation throughout training (Figure 7c). This is consistent with the

assumption that participants learned a hierarchical categorization rule

rather than a flat rule. Third, we found a significant increase of repre-

sentational strength for the learned hierarchy in the dorsal striatum

and posterior frontal cortex; key regions involved in hierarchical rule

learning but not in flat rule learning (see Badre et al., 2010). Therefore,

we think it is fair to assume a theoretical RDM that is hierarchical for

the RSA, although our analysis approach has the limitation that we

could not directly compare data fits with hierarchical and flat RDMs.

The subcortical nuclei included in our RSA are small, leading to nois-

ier fMRI patterns. We tried to overcome this issue for the caudate and

putamen by conjoining them into a dorsal striatum ROI. This increased

the sensitivity for this ROI compared with the ventral striatum and palli-

dum but also rendered it difficult to separate the individual contributions

of caudate and putamen to learning of our hierarchical categorization

task. Future studies might overcome this limitation by using a smaller

voxel size and higher magnetic field strength to increase the quality of

BOLD activation patterns in different nuclei of the striatum.

5 | CONCLUSION

Taken together, our results suggest that learning a complex categori-

zation hierarchy to organize a novel visual stimulus space significantly
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affected how the learned hierarchy was represented in the brain. This

learning particularly involved the dorsal striatum and the posterior

frontal and parietal cortex. The interactions between these subcortical

and cortical structures by means of corticostriatal loops may be critical

to learning highly complex decision trees and might ultimately change

the way the categorized stimuli are represented in the brain.
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